3.6.45 \(\int \frac {x (c+d x+e x^2+f x^3)}{(a+b x^4)^{3/2}} \, dx\) [545]

Optimal. Leaf size=303 \[ -\frac {x \left (a f-b c x-b d x^2-b e x^3\right )}{2 a b \sqrt {a+b x^4}}-\frac {e \sqrt {a+b x^4}}{2 a b}-\frac {d x \sqrt {a+b x^4}}{2 a \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} d-\sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt {a+b x^4}} \]

[Out]

-1/2*x*(-b*e*x^3-b*d*x^2-b*c*x+a*f)/a/b/(b*x^4+a)^(1/2)-1/2*e*(b*x^4+a)^(1/2)/a/b-1/2*d*x*(b*x^4+a)^(1/2)/a/b^
(1/2)/(a^(1/2)+x^2*b^(1/2))+1/2*d*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*
EllipticE(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))
^2)^(1/2)/a^(3/4)/b^(3/4)/(b*x^4+a)^(1/2)-1/4*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*
x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(-f*a^(1/2)+d*b^(1/2))*(a^(1/2)+x^2*b^(1/2
))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(3/4)/b^(5/4)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 303, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {1842, 1899, 267, 1212, 226, 1210} \begin {gather*} -\frac {\left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\sqrt {b} d-\sqrt {a} f\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt {a+b x^4}}+\frac {d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt {a+b x^4}}-\frac {x \left (a f-b c x-b d x^2-b e x^3\right )}{2 a b \sqrt {a+b x^4}}-\frac {d x \sqrt {a+b x^4}}{2 a \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {e \sqrt {a+b x^4}}{2 a b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

-1/2*(x*(a*f - b*c*x - b*d*x^2 - b*e*x^3))/(a*b*Sqrt[a + b*x^4]) - (e*Sqrt[a + b*x^4])/(2*a*b) - (d*x*Sqrt[a +
 b*x^4])/(2*a*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) + (d*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b
]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(3/4)*b^(3/4)*Sqrt[a + b*x^4]) - ((Sqrt[b]*d - S
qrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a
^(1/4)], 1/2])/(4*a^(3/4)*b^(5/4)*Sqrt[a + b*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1842

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = m + Expon[Pq, x]}, Module[{Q = Pol
ynomialQuotient[b^(Floor[(q - 1)/n] + 1)*x^m*Pq, a + b*x^n, x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] +
1)*x^m*Pq, a + b*x^n, x]}, Dist[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1)), Int[(a + b*x^n)^(p + 1)*ExpandToSum[
a*n*(p + 1)*Q + n*(p + 1)*R + D[x*R, x], x], x], x] + Simp[(-x)*R*((a + b*x^n)^(p + 1)/(a*n*(p + 1)*b^(Floor[(
q - 1)/n] + 1))), x]] /; GeQ[q, n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && IGtQ[m,
 0]

Rule 1899

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[Sum[x^j*Sum[Coeff[P
q, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b
, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps

\begin {align*} \int \frac {x \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx &=-\frac {x \left (a f-b c x-b d x^2-b e x^3\right )}{2 a b \sqrt {a+b x^4}}-\frac {\int \frac {-a f+b d x^2+2 b e x^3}{\sqrt {a+b x^4}} \, dx}{2 a b}\\ &=-\frac {x \left (a f-b c x-b d x^2-b e x^3\right )}{2 a b \sqrt {a+b x^4}}-\frac {\int \left (\frac {2 b e x^3}{\sqrt {a+b x^4}}+\frac {-a f+b d x^2}{\sqrt {a+b x^4}}\right ) \, dx}{2 a b}\\ &=-\frac {x \left (a f-b c x-b d x^2-b e x^3\right )}{2 a b \sqrt {a+b x^4}}-\frac {\int \frac {-a f+b d x^2}{\sqrt {a+b x^4}} \, dx}{2 a b}-\frac {e \int \frac {x^3}{\sqrt {a+b x^4}} \, dx}{a}\\ &=-\frac {x \left (a f-b c x-b d x^2-b e x^3\right )}{2 a b \sqrt {a+b x^4}}-\frac {e \sqrt {a+b x^4}}{2 a b}+\frac {d \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx}{2 \sqrt {a} \sqrt {b}}-\frac {\left (\frac {\sqrt {b} d}{\sqrt {a}}-f\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx}{2 b}\\ &=-\frac {x \left (a f-b c x-b d x^2-b e x^3\right )}{2 a b \sqrt {a+b x^4}}-\frac {e \sqrt {a+b x^4}}{2 a b}-\frac {d x \sqrt {a+b x^4}}{2 a \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} d-\sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.08, size = 116, normalized size = 0.38 \begin {gather*} \frac {-3 a e-3 a f x+3 b c x^2+3 a f x \sqrt {1+\frac {b x^4}{a}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {b x^4}{a}\right )+2 b d x^3 \sqrt {1+\frac {b x^4}{a}} \, _2F_1\left (\frac {3}{4},\frac {3}{2};\frac {7}{4};-\frac {b x^4}{a}\right )}{6 a b \sqrt {a+b x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

(-3*a*e - 3*a*f*x + 3*b*c*x^2 + 3*a*f*x*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^4)/a)] + 2
*b*d*x^3*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x^4)/a)])/(6*a*b*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.38, size = 250, normalized size = 0.83

method result size
elliptic \(-\frac {2 b \left (-\frac {d \,x^{3}}{4 a b}-\frac {c \,x^{2}}{4 b a}+\frac {f x}{4 b^{2}}+\frac {e}{4 b^{2}}\right )}{\sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {f \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 b \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {i d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\) \(227\)
default \(f \left (-\frac {x}{2 b \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{2 b \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )-\frac {e}{2 b \sqrt {b \,x^{4}+a}}+d \left (\frac {x^{3}}{2 a \sqrt {\left (x^{4}+\frac {a}{b}\right ) b}}-\frac {i \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )+\frac {c \,x^{2}}{2 a \sqrt {b \,x^{4}+a}}\) \(250\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

f*(-1/2/b*x/((x^4+a/b)*b)^(1/2)+1/2/b/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b
^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I))-1/2*e/b/(b*x^4+a)^(1/2)+d*(1/2/a*x
^3/((x^4+a/b)*b)^(1/2)-1/2*I/a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^
(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1
/2))^(1/2),I)))+1/2*c*x^2/a/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

1/2*c*x^2/(sqrt(b*x^4 + a)*a) + integrate((f*x^4 + x^3*e + d*x^2)/(b*x^4 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]
time = 0.09, size = 147, normalized size = 0.49 \begin {gather*} \frac {{\left (b^{2} d x^{4} + a b d\right )} \sqrt {a} \left (-\frac {b}{a}\right )^{\frac {3}{4}} E(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) - {\left ({\left (b^{2} d + a b f\right )} x^{4} + a b d + a^{2} f\right )} \sqrt {a} \left (-\frac {b}{a}\right )^{\frac {3}{4}} F(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) + {\left (b^{2} d x^{3} + b^{2} c x^{2} - a b f x - a b e\right )} \sqrt {b x^{4} + a}}{2 \, {\left (a b^{3} x^{4} + a^{2} b^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

1/2*((b^2*d*x^4 + a*b*d)*sqrt(a)*(-b/a)^(3/4)*elliptic_e(arcsin(x*(-b/a)^(1/4)), -1) - ((b^2*d + a*b*f)*x^4 +
a*b*d + a^2*f)*sqrt(a)*(-b/a)^(3/4)*elliptic_f(arcsin(x*(-b/a)^(1/4)), -1) + (b^2*d*x^3 + b^2*c*x^2 - a*b*f*x
- a*b*e)*sqrt(b*x^4 + a))/(a*b^3*x^4 + a^2*b^2)

________________________________________________________________________________________

Sympy [A]
time = 6.82, size = 133, normalized size = 0.44 \begin {gather*} e \left (\begin {cases} - \frac {1}{2 b \sqrt {a + b x^{4}}} & \text {for}\: b \neq 0 \\\frac {x^{4}}{4 a^{\frac {3}{2}}} & \text {otherwise} \end {cases}\right ) + \frac {c x^{2}}{2 a^{\frac {3}{2}} \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {d x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {3}{2} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {7}{4}\right )} + \frac {f x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {5}{4}, \frac {3}{2} \\ \frac {9}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {9}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

e*Piecewise((-1/(2*b*sqrt(a + b*x**4)), Ne(b, 0)), (x**4/(4*a**(3/2)), True)) + c*x**2/(2*a**(3/2)*sqrt(1 + b*
x**4/a)) + d*x**3*gamma(3/4)*hyper((3/4, 3/2), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(7/4)) + f*x
**5*gamma(5/4)*hyper((5/4, 3/2), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(9/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + x^2*e + d*x + c)*x/(b*x^4 + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{{\left (b\,x^4+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x)

[Out]

int((x*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2), x)

________________________________________________________________________________________